Accounting for scattering directivity and fish behaviour in multibeam-echosounder surveys

Author:

Cutter George R.1,Demer David A.1

Affiliation:

1. NOAA NMFS Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA

Abstract

Abstract Cutter, G. R. Jr and Demer, D. A. 2007. Accounting for scattering directivity and fish behaviour in multibeam-echosounder surveys. – ICES Journal of Marine Science, 64. Multibeam echosounders can improve the efficiency and the precision of acoustic-survey estimates by providing greater sampling volumes than single-beam echosounders. For a multibeam echosounder, the target strength of fish can vary with its pitch, roll, and yaw. Here, normalized, acoustic backscatter patterns from fish schools are modelled by beam-incidence angle,0–180°, considering the scattering-directivity patterns of each fish. Variation of pitch angle causes a decrease in the mean and an increase in the variance of the backscatter in the vertical beam, but has no effect on the backscatter in the outer beams. Conversely, variation of the yaw causes a decrease in the mean and an increase in the variance of the backscatter in only the outer beams. Because the fish-scattering model predicts different backscatter at dorsal- vs. lateral-incidence angles, backscatter did vary with roll angle. In the hypothetical case of fish avoiding a vessel, the backscatter decreases strongly the outer beams. The results of the model were compared with multibeam measurements of fish schools. In general, the measured mean backscatter vs. beam-incidence angle was nearly uniform. The methods described here provide an approach to accounting for scattering directivity and fish behaviour in multibeam-echosounder surveys.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3