External and internal grouping characteristics of juvenile walleye pollock in the Eastern Bering Sea

Author:

Stienessen Sarah C.,Wilson Christopher D.,Weber Thomas C.,Parrish Julia K.

Abstract

Size and shape patterns of fish groups are collective outcomes of interactions among members. Consequently, group-level patterns are often affected when any member responds to changes in their internal state, external state, and environment. To determine how groups of fish respond to components of their physical and ecological environment, and whether the response is influenced by a component of their external state (i.e., fish age), we used a multibeam system to collect three-dimensional grouping characteristics of 5 age categories of juvenile walleye pollock (age 1, age 2, age 3, mixed ages 1 and 2, and mixed ages 2 and 3) across the eastern Bering Sea shelf over two consecutive years (2009–2010). Grouping data were expressed as metrics that described group size (length, height), shape (roundness, spread), internal structure (density, internal heterogeneity), and position (depth, distance above bottom). Physical data (water temperature measurements) were collected with temperature-depth probes, and ecological data (densities of predators and prey − adult walleye pollock and euphausiids, respectively) were collected with an EK60 vertical echosounder. Juvenile pollock maintained a relatively constant shape, size-dependent density (number fish/mean body length3), and internal horizontal heterogeneity among age categories and in the presence of predators and prey. There were changes to group structure in the face of local physical forcing. Groups tended to move towards the seafloor when bottom waters became warmer, and groups became vertically shorter, denser, and had more variation in horizontal internal density as group depth increased. These results are explored in relation to the value and limitations of using multibeam data to describe how external and internal group structure map onto environmental influences.

Publisher

EDP Sciences

Subject

Aquatic Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3