European eel Anguilla anguilla compromise speed for safety in the early marine spawning migration

Author:

Lennox Robert J1,Økland Finn2,Mitamura Hiromichi3,Cooke Steven J1,Thorstad Eva B2

Affiliation:

1. Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada

2. Norwegian Institute for Nature Research, Sluppen, Trondheim, Norway

3. Graduate School of Informatics, Kyoto University, Kyoto, Japan

Abstract

Abstract There are substantial benefits to potential fitness conferred to animals that undertake migrations. However, animals must make compromises to maximize survival and compensate for the risks associated with long-distance movement. European eel (Anguilla anguilla), a migratory catadromous fish, has undergone population declines owing to changes in marine and freshwater habitat and interactions with human infrastructure, instigating research to investigate the mechanisms controlling their migration. Yellow-phase European eels from the local River Opo and silver-phase European eels transplanted from River Imsa, Norway, were implanted with acoustic transmitters and released within a network of receiver stations in the Hardangerfjord, Norway. Silver-phase eels exhibited more movement within the array than yellow-phase eels, signifying the onset of migration. Silver-phase eels moved through the fjord nocturnally, arriving at gates predominantly at night. Eels had slower rates of migration than expected based on models predicting continuous movement, suggesting that movement ceased during daylight hours. Reduced net rates of travel supported the hypothesis that eels compromise speed for safety during the early marine migration by avoiding predators and not actively migrating during daylight. The silver eels were capable of directed movement towards the ocean and were not recorded by receivers in bays or dead ends. European eels must successfully transit this coastal zone, where their residence is prolonged because of the relatively slow speeds. These results suggest that the early marine phase of the European eel spawning migration be a focal period for European eel conservation efforts.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3