To hear or not to hear: selective tidal stream transport can interfere with the detectability of migrating silver eels in a Tidal River

Author:

Merk Benedikt,Höhne Leander,Freese Marko,Marohn Lasse,Hanel Reinhold,Pohlmann Jan-Dag

Abstract

AbstractAcoustic telemetry provides valuable insights into behavioural patterns of aquatic animals such as downstream migrating European eels (Anguilla anguilla), so called silver eels. The behaviour of silver eels during the migration is known to be influenced by environmental factors, yet so is the performance of acoustic telemetry networks. This study quantifies the impact of these environmental factors on both, migration behaviour and receiver performance to determine possible limiting conditions for detecting tagged eels in tidal areas. A dominance analysis of the selected models describing migration speed, activity and receiver performance was conducted following 234 silver eels that were tagged with acoustic transmitters and observed by a receiver network in the Ems River during two subsequent migration seasons. The results suggest a passive locomotion of silver eels during their downstream migration by taking advantage of selective tidal stream transport (STST). It is further shown that water temperature, salinity, turbidity, precipitation, and especially current velocity were major parameters influencing migration activity and speed. At the same time, analyses of the detection probability of tagged eels under varying environmental conditions indicated a decreased receiver performance during increased current velocities, meaning that high migration activity and -speed coincides with reduced detection probability. Consequently, there is a risk that particularly during phases of increased activity, migration activity may be underestimated due to reduced acoustic telemetry performance. To avoid bias in telemetry studies, it is, therefore, crucial to conduct range tests and adjust the receiver placement in areas and conditions of high current velocities.

Funder

Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3