Using Dominance Analysis to Determine Predictor Importance in Logistic Regression

Author:

Azen Razia1,Traxel Nicole1

Affiliation:

1. University of Wisconsin, Milwaukee

Abstract

This article proposes an extension of dominance analysis that allows researchers to determine the relative importance of predictors in logistic regression models. Criteria for choosing logistic regression R2 analogues were determined and measures were selected that can be used to perform dominance analysis in logistic regression. A simulation study, using both simple random sampling from a known population and bootstrap sampling from a single (parent) random sample, was performed to evaluate the bias, sampling distribution, and confidence intervals of quantitative dominance measures as well as the reproducibility of qualitative dominance measures. Results indicated that the bootstrap procedure is feasible and can be used in applied research to generalize logistic regression dominance analysis results to the population of interest. The procedures for determining and interpreting the general dominance of predictors in a logistic regression context are illustrated with an empirical example.

Publisher

American Educational Research Association (AERA)

Subject

Social Sciences (miscellaneous),Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3