Exploring the role of the physical marine environment in silver eel migrations using a biophysical particle tracking model

Author:

Béguer-Pon Mélanie12,Shan Shiliang2,Thompson Keith R.2,Castonguay Martin3,Sheng Jinyu2,Dodson Julian J.1

Affiliation:

1. Département de Biologie, Université Laval, Pavillon Vachon, 1045 avenue de la Médecine, QC, CanadaG1V 0A6

2. Department of Oceanography, Dalhousie University, 1355 Oxford Street, PO Box 15000, Halifax, NS, CanadaB3H 4R2

3. Institut Maurice-Lamontagne, Pêches et Océans Canada, 850 route de la Mer, C.P. 1000, Mont-Joli, QC, CanadaG5H 3Z4

Abstract

Abstract Both the American eel (Anguilla rostrata) and European eel (Anguilla anguilla) undertake long-distance migrations from continental waters to their spawning sites in the Sargasso Sea. Their migration routes and orientation mechanisms remain a mystery. A biophysical particle tracking model was used in this study to simulate their oceanic migration from two release areas: off the Scotian Shelf (Canada) and off the Irish continental shelf. Two plausible swimming-directed behaviours were considered for simulating two different migratory paths: true navigation to specific spawning sites and innate compass orientation towards the vast spawning area. Several combinations of swimming speeds and depths were tested to assess the effect of ocean circulation on resulting migratory pathways of virtual eels (v-eels), environmental conditions experienced along their oceanic migration, and energy consumption. Simulations show that the spawning area can be reached in time by constantly swimming and following a readjusted heading (true navigation) or a constant heading (compass orientation) even at the lowest swimming speed tested (0.2 m s−1) for most v-eels. True navigation might not be necessary to reach the spawning area. The ocean currents affect mainly the migration of American v-eels, particularly for swimming speeds lower than 0.8 m s−1. The ocean circulation increases the variability in the oceanic migration and generally reduces the efficiency of the v-eels, although positive effects can be possible for certain individuals. The depth range of diel vertical migration (DVM) significantly affects the total energy expenditure due to the water temperature experienced at the various depths. Model results also suggest that energy would not be a limiting factor as v-eels constantly swimming at 0.8 BL s−1 spent <25 and 42% of energy available for migration for American and European v-eels, respectively.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3