A novel model of predator–prey interactions reveals the sensitivity of forage fish: piscivore fishery trade-offs to ecological conditions

Author:

Essington Timothy E.1,Baskett Marissa L.2,Sanchirico James N.2,Walters Carl3

Affiliation:

1. School of Aquatic and Fishery Sciences, University of Washington, Seattle, USA

2. Department of Environmental Science and Policy, University of California, Davis, CA, USA

3. Fisheries Centre, University of British Columbia, Vancouver, BC, Canada

Abstract

Abstract Ecosystem-based fisheries management seeks to consider trade-offs among management objectives for interacting species, such as those that arise through predator–prey linkages. In particular, fisheries-targeting forage fish (small and abundant pelagic fish) might have a detrimental effect on fisheries-targeting predators that consume them. However, complexities in ecological interactions might dampen, negate, or even reverse this trade-off, because small pelagic fish can be important predators on egg stages of piscivorous fish. Further, the strength of this trade-off might depend on the extent to which piscivorous fish targeted by fisheries regulate forage species productivity. Here, we developed a novel delay-differential bioeconomic model of predator–prey and fishing dynamics to quantify how much egg predation or weak top-town control affects the strength of trade-off between forage and piscivore fisheries, and to measure how ecological interactions dictate policies that maximize steady-state profits. We parameterized the model based on ecological and economic data from the North Sea Atlantic cod (Gadus morhua) and Atlantic herring (Clupea harengus). The optimal policy was very sensitive to the ecological interactions (either egg predation or weak top-down control of forage by predators) at relatively low forage prices but was less sensitive at high forage fish prices. However, the optimal equilibrium harvest rates on forage and piscivores were not substantially different from what might be derived through analyses that did not consider species interactions. Applying the optimal multispecies policy would produce substantial losses (>25%) in profits in the piscivore fishery, and the extent of loss was sensitive to ecological scenarios. While our equilibrium analysis is informative, a dynamic analysis under similar ecological scenarios is necessary to reveal the full economic and ecological benefits of applying ecosystem-based fishery management policies to predator–prey fishery systems.

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Reference60 articles.

1. Forage fish: from ecosystems to markets;Alder;Annual Review of Environment and Resources,2008

2. Wasp-waist populations and marine ecosystem dynamics: navigating the “predator pit” topographies;Bakun;Progress in Oceanography,2006

3. Regulating a complex adaptive system via its wasp-waist: grappling with ecosystem-based management of the New England herring fishery;Bakun;ICES Journal of Marine Science,2009

4. The dynamics of an open access fishery;Bjørndal;Canadian Journal of Economics,1987

5. International management of North-Sea herring;Bjørndal;Environmental and Resource Economics,2004

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3