Characterizing hydrological droughts within three watersheds in Yunnan, China from GNSS-inferred terrestrial water storage changes constrained by GRACE data

Author:

Zhu Hai1ORCID,Chen Kejie1,Hu Shunqiang1,Wei Guoguang1,Chai Haishan1,Wang Tan2

Affiliation:

1. Department of Earth and Space Sciences, Southern University of Science and Technology , Shenzhen 518055 , China

2. China Earthquake Networks Center , Beijing 100045 , China

Abstract

SUMMARY The spatiotemporal evolution of drought is often modulated by climate and watershed characteristics. While numerous drought studies using space geodesy have been conducted in Yunnan, the scarcity and limited sensitivity of observation instruments have hindered the development of watershed-scale drought analyses. This study aims to accurately characterize hydrological droughts within three watersheds in Yunnan from 2011 January to 2021 May by a Global Navigation Satellite System (GNSS) inversion constrained by Gravity Recovery and Climate Experiment (GRACE) data. Initially, we employed Variational Bayesian Independent Component Analysis to reconstruct the 3-D crustal deformations at 43 GNSS stations resulting from hydrological loadings. We then computed the time-series of vertical displacements caused by GRACE Mascon water products. Subsequently, utilizing the method of least squares, we derived the scaling factors between the vertical crustal displacements (VCD) obtained from GNSS observations and the synthetic displacements derived from GRACE data. By combing scaling-factor-adjusted VCDs derived from GRACE with the GNSS data, we have obtained accurate estimates of water storage for three Yunnan watersheds. Finally, we identified drought events characterized by abnormal decreases in water storage and used climatological methods to quantitatively describe the severity, extent and recovery of these drought extremes. Additionally, we evaluated the influence of various earth elastic structures on the scaling factors, and demonstrated their advantageous contribution to aligning GNSS and GRACE observations. In conclusion, our study introduces a novel approach to integrate GNSS and GRACE retrievals, allowing for accurate characterization of droughts in data-scarce regions, which cannot be achieved by GNSS or GRACE individually. Moreover, our results underscore the potential benefits of watershed-scale drought monitoring and analysis for effective water resource management.

Funder

Guangdong Natural Science Foundation

United Laboratory of Numerical Earthquake Forecasting

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3