Using geodetic measurements derived terrestrial water storage to investigate the characteristics of drought in Yunnan, China

Author:

Chen Chao,Zou Rong,Fang Zhiwei,Cao Jiaming,Wang Qi

Abstract

AbstractThe use of the global navigation satellite system (GNSS) for monitoring changes in terrestrial water storage (TWS) is growing. However, the density of GNSS stations is sparse in most areas, and the widely used Green’s function (GF) method cannot provide a satisfactory resolution for inversion problems. As the Slepian basis function (SBF) method has been successfully used for gravity inversions, GNSS geodesists have recently applied the SBF method to GNSS displacements. However, the evaluation of TWS differences inferred from GNSS using the SBF and the GF has been rarely assessed. In this study, we use both the GF and the SBF methods to investigate the TWS in Yunnan by using more than ten years (2010–2021) of GNSS observations. We observe a remarkable consistency between the two inversion methods employed for GNSS data, as well as a strong agreement with equivalent water heights (EWH) inferred from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GFO), hydrological model (GLDAS-NOAH), and precipitation data, despite variations in the amplitude. Furthermore, affected by monsoon climate and topography, Yunnan is prone to drought. We analyze the main nine drought events, evaluate the connection between GNSS-inverted TWS during 2010–2021, and find that almost all droughts in Yunnan occurred during the "trough period" within the GNSS-DSI.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3