QuantifyingP-wave secondary microseisms events: a comparison of observed and modelled backprojection

Author:

Zhang R12,Boué P2,Campillo M2,Ma J13ORCID

Affiliation:

1. School of Mathematics and Center of Geophysics, Harbin Institute of Technology , 150001 Harbin , China

2. Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre , Grenoble , France

3. School of Earth and Space Sciences, Center of Artificial Intelligence Geoscience, Peking University , Beijing 100871 , China

Abstract

SUMMARYSecondary microseisms are caused by nonlinear interactions between ocean waves of approximately equal wavelengths and opposite propagation directions. This seismic forcing is evaluated using ocean sea-state hindcast data and further modulated by the bathymetric effect. The numerical ocean model provides a global activity representation of the secondary microseisms, from which we isolate major events. We backprojected teleseismic P-wave propagation into the Earth's mantle to validate these events as effective seismic sources. The ocean model provides spectral amplitude information for modelling microseisms generated seismic wavefield. A comparison of the backprojection for P and PP phases from observed and synthetic microseisms forcing indicates high reliability in the ocean model, at least for major sources. A combination of P and PP phases detected across a global network of stations enables global ocean coverage. We improve backprojection images even further by introducing a two-step stacking for the P phase to address the problem of unbalanced station distribution. Thresholds of microseisms events forces valuable for seismic imaging are determined by comparing backprojections and ocean models for the years 2015 and 2020. Finally, we extracted a catalogue of microseisms events every 3-hr from 1994 to 2020 from the ocean hindcast data set. This catalogue is an intriguing resource for future applications of interferometric imaging at large scale.

Funder

National Natural Science Foundation of China

European Research Council

European Union

ANR

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3