Induced polarization of volcanic rocks. Part 7. Kimberlites

Author:

Titov K1ORCID,Abramov V12,Emelianov V1ORCID,Revil A3ORCID

Affiliation:

1. Institute of Earth Sciences, St. Petersburg State University , 7-9 Universitetskaya naberezhnaya, 199034, St. Petersburg , Russia

2. Vilyuyskaya Geological Exploration Expedition, PJSC «ALROSA» , 7B, ul. Vilyuyskaya, Mirny, 678174, Republic of Sakha (Yakutia) , Russia

3. Université Grenoble Alpes, Univ. Savoie Mont-Blanc , CNRS, UMR CNRS 5204, EDYTEM, 73370 Le Bourget du Lac , France

Abstract

SUMMARY In the field, kimberlites are characterized by high electrical conductivities (about 0.1 S m−1) compared to most igneous rocks. The reason for these high conductivities has not been fully elucidated to date. We investigate here the spectral induced polarization of seven core samples of kimberlites in the frequency range 1.43 mHz–20 kHz. The measurements are made at pore water conductivities ranging from 0.07 to 2.4 S m−1 (NaCl, 25 °C). We also measured the cation exchange capacity (CEC), the specific surface area (SSA) and the magnetic susceptibility of the core samples. We characterized the samples by optical microscopy as well as the X-ray diffraction and thermogravimetric analyses. Based on the electrical measurements, we obtained values of the surface conductivity produced by the double electrical layer coating the solid particles, and the normalized chargeability values characterizing the polarization magnitude of these materials. Mineralogical analyses show significant amount of magnetite (from 2 to 9 wt. per cent, approximately 1 to 4 per cent in vol. content) and smectite (from 1 to 44 wt. per cent) in the core samples. The main contributor of the CEC is smectite because of its very high CEC. The quadrature conductivity, the normalized chargeability, and the surface conductivity are controlled by the CEC normalized by the tortuosity of the pore space (product of the formation factor by the porosity). Our data demonstrate that the conduction and polarization of kimberlites are both controlled by the presence of smectite rather than associated with magnetite. Comparing the new data set and data recently obtained with volcanic rocks from both shield and strato-volcanoes in the previous papers of this series, we show that the model of polarization of the dynamic Stern layer correctly describes the complex electrical conductivity of kimberlites as well. Our results also explain the cause of electrical conductivity anomalies detected at kimberlite pipes and offer new perspectives in using induced polarization method for the exploration of kimberlites around the world.

Funder

Russian Science Foundation

St. Petersburg State University

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3