SARS-CoV-2 S Protein Subunit 1 Elicits Ca2+ Influx – Dependent Ca2+ Signals in Pancreatic Stellate Cells and Macrophages In Situ

Author:

Gerasimenko Julia V1ORCID,Petersen Ole H1ORCID,Gerasimenko Oleg V1ORCID

Affiliation:

1. School of Biosciences, Sir Martin Evans Building, Cardiff University, Wales CF10 3AX, UK

Abstract

Abstract The S protein subunit 1 (S1) of SARS-CoV-2 is known to be responsible for the binding of the virus to host cell receptors, but the initial intracellular signalling steps following receptor activation of cells in the exocrine pancreas are unknown. Using an intact live mouse pancreatic lobule preparation, we observed that S1 elicited Ca2+ signals in stellate cells and macrophages, but not in the dominant acinar cells. The Ca2+ signals occurred mostly in the form of repetitive Ca2+ spikes. The probability of observing Ca2+ signals depended on the S1 concentration. The threshold was close to 70 nM, whereas at 600 nM, all cells responded. The SARS-Cov-2 nucleocapsid protein did not elicit any Ca2+ signals in any of the three cell types tested. The S1-induced Ca2+ signals in stellate cells started much faster (122 ± 37s) than those in macrophages (468 ± 68s). Furthermore, the interleukin-18 binding protein (IL-18BP) abolished the responses in macrophages without affecting the Ca2+ signals in stellate cells. The S1-elicited Ca2+ signals were completely dependent on the presence of external Ca2+ and were abolished by a selective inhibitor (CM4620) of Orai1 Ca2+ Release Activated Ca2+ channels. SARS-CoV-2 may contribute to acute pancreatitis, an often fatal inflammatory human disease. The S1-elicited Ca2+ signals we have observed in the pancreatic stellate cells and endogenous macrophages may play an important part in the development of the inflammatory process.

Funder

Medical Research Council Canada

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3