Boosted trees to predict pneumonia, growth, and meat percentage of growing-finishing pigs1

Author:

Mollenhorst Herman1ORCID,Ducro Bart J1,De Greef Karel H1,Hulsegge Ina1,Kamphuis Claudia1

Affiliation:

1. Wageningen University and Research, Animal Breeding and Genomics, 6700 AH Wageningen, the Netherlands

Abstract

Abstract In pig production, efficiency is benefiting from uniform growth in pens resulting in single deliveries from a pen of possibly all animals in the targeted weight range. Abnormalities, like pneumonia or aberrant growth, reduce production efficiency as it reduces the uniformity and might cause multiple deliveries per batch and pigs delivered with a low meat yield or outside the targeted weight range. Early identification of pigs prone to develop these abnormalities, for example, at the onset of the growing-finishing phase, would help to prevent heterogeneous pens through management interventions. Data about previous production cycles at the farm combined with data from the piglet’s own history may help in identifying these abnormalities. The aim of this study, therefore, was to predict at the onset of the growing-finishing phase, that is, at 3 mo in advance, deviant pigs at slaughter with a machine-learning technique called boosted trees. The dataset used was extracted from the farm management system of a research center. It contained over 70,000 records of individual pigs born between 2004 and 2016, including information on, for example, offspring, litter size, transfer dates between production stages, their respective locations within the barns, and individual live-weights at several production stages. Results obtained on an independent test set showed that at a 90% specificity rate, the sensitivity was 16% for low meat percentage, 20% for pneumonia and 36% for low lifetime growth rate. For low lifetime growth rate, this meant an almost three times increase in positive predictive value compared to the current situation. From these results, it was concluded that routine performance information available at the onset of the growing-finishing phase combined with data about previous production cycles formed a moderate base to identify pigs prone to develop pneumonia (AUC > 0.60) and a good base to identify pigs prone to develop growth aberrations (AUC > 0.70) during the growing-finishing phase. The mentioned information, however, was not a sufficient base to identify pigs prone to develop low meat percentage (AUC < 0.60). The shown ability to identify growth aberrations and pneumonia can be considered a good first step towards the development of an early warning system for pigs in the growing-finishing phase.

Funder

Dutch Ministry of Economic Affairs

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3