E-cigarettes Induce Dysregulation of Autophagy Leading to Endothelial Dysfunction in Pulmonary Arterial Hypertension

Author:

Liu Chen-wei1,Le Hoai Huong Thi1,Denaro Philip1,Dai Zhiyu23,Shao Ning-Yi4,Ong Sang-Ging56,Lee Won Hee12ORCID

Affiliation:

1. Department of Basic Medical Sciences, University of Arizona College of Medicine , Phoenix, AZ , USA

2. Translational Cardiovascular Research Center, University of Arizona College of Medicine , Phoenix, AZ , USA

3. Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep, University of Arizona College of Medicine , Phoenix, AZ , USA

4. Health Sciences, University of Macau , Macau , People’s Republic of China

5. Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine , Chicago, IL , USA

6. Division of Cardiology, Department of Medicine, University of Illinois College of Medicine , Chicago, IL , USA

Abstract

Abstract Given the increasing popularity of electronic cigarettes (e-cigs), it is imperative to evaluate the potential health risks of e-cigs, especially in users with preexisting health concerns such as pulmonary arterial hypertension (PAH). The aim of the present study was to investigate whether differential susceptibility exists between healthy and patients with PAH to e-cig exposure and the molecular mechanisms contributing to it. Patient-specific induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from healthy individuals and patients with PAH were used to investigate whether e-cig contributes to the pathophysiology of PAH and affects EC homeostasis in PAH. Our results showed that PAH iPSC-ECs showed a greater amount of damage than healthy iPSC-ECs upon e-cig exposure. Transcriptomic analyses revealed that differential expression of Akt3 may be responsible for increased autophagic flux impairment in PAH iPSC-ECs, which underlies increased susceptibility upon e-cig exposure. Moreover, knockdown of Akt3 in healthy iPSC-ECs significantly induced autophagic flux impairment and endothelial dysfunction, which further increased with e-cig treatment, thus mimicking the PAH cell phenotype after e-cig exposure. In addition, functional disruption of mTORC2 by knocking down Rictor in PAH iPSC-ECs caused autophagic flux impairment, which was mediated by downregulation of Akt3. Finally, pharmacological induction of autophagy via direct inhibition of mTORC1 and indirect activation of mTORC2 with rapamycin reverses e-cig-induced decreased Akt3 expression, endothelial dysfunction, autophagic flux impairment, and decreased cell viability, and migration in PAH iPSC-ECs. Taken together, these data suggest a potential link between autophagy and Akt3-mediated increased susceptibility to e-cig in PAH.

Funder

American Heart Association

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3