Climate change impacts on the potential worldwide distribution of the soybean pest, Piezodorus guildinii (Hemiptera: Pentatomidae)

Author:

Chen Juhong1ORCID,Jiang Kun1,Wang Shujing1,Li Yanfei1,Zhang Yaoyao1,Tang Zechen1,Bu Wenjun1

Affiliation:

1. Institute of Entomology, College of Life Sciences, Nankai University , 94 Weijin Road, Tianjin 300071 , China

Abstract

Abstract The redbanded stink bug, Piezodorus guildinii (Westwood, 1837), is a highly destructive soybean pest native to the Neotropical Region. In the past 60 yr, P. guildinii has been observed to expand its distribution in North and South America, causing significant soybean yield losses. In order to predict the future distribution direction of P. guildinii and create an effective pest control strategy, we projected the potential global distribution of P. guildinii using 2 different emission scenarios, Shared Socioeconomic Pathways 126 and 585, and 3 Earth system models, with the maximum entropy niche model (MaxEnt). Then, the predicted distribution areas of P. guildinii were jointly analyzed with the main soybean-producing areas to assess the impact for different soybean region. Our results showed that temperature is the main environmental factor limiting the distribution of P. guildinii. Under present climate conditions, all continents except Antarctica have suitable habitat for P. guildinii. These suitable habitats overlap with approximately 45.11% of the total global cultivated soybean areas. Moreover, P. guildinii was predicted to expand its range in the future, particularly into higher latitudes in the Northern hemisphere. Countries, in particular the United States, where soybean is widely available, would face a management challenge under global warming. In addition, China and India are also high-risk countries that may be invaded and should take strict quarantine measures. The maps of projected distribution produced in this study may prove useful in the future management of P. guildinii and the containment of its disruptive effects.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3