Distribution-free model for community detection

Author:

Qing Huan1ORCID

Affiliation:

1. School of Mathematics, China University of Mining and Technology , Xuzhou, 221116 Jiangsu Province , China

Abstract

AbstractCommunity detection for unweighted networks has been widely studied in network analysis, but the case of weighted networks remains a challenge. This paper proposes a general distribution-free model (DFM) for weighted networks in which nodes are partitioned into different communities. DFM can be seen as a generalization of the famous stochastic block models from unweighted networks to weighted networks. DFM does not require prior knowledge of a specific distribution for elements of the adjacency matrix but only the expected value. In particular, signed networks with latent community structures can be modeled by DFM. We build a theoretical guarantee to show that a simple spectral clustering algorithm stably yields consistent community detection under DFM. We also propose a four-step data generation process to generate adjacency matrices with missing edges by combining DFM, noise matrix, and a model for unweighted networks. Using experiments with simulated and real datasets, we show that some benchmark algorithms can successfully recover community membership for weighted networks generated by the proposed data generation process.

Publisher

Oxford University Press (OUP)

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3