Affiliation:
1. School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China
Abstract
Community detection in weighted networks has been a popular topic in recent years. However, while there exist several flexible methods for estimating communities in weighted networks, these methods usually assume that the number of communities is known. It is usually unclear how to determine the exact number of communities one should use. Here, to estimate the number of communities for weighted networks generated from arbitrary distribution under the degree-corrected distribution-free model, we propose one approach that combines weighted modularity with spectral clustering. This approach allows a weighted network to have negative edge weights and it also works for signed networks. We compare the proposed method to several existing methods and show that our method is more accurate for estimating the number of communities both numerically and empirically.
Funder
Scientific research start-up fund of CUMT
High-level personal project of Jiangsu Province
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献