Biogeographic patterns in populations of marine Pseudoalteromonas atlantica isolates

Author:

Kokate Prajakta P1,Bales Erika2,Joyner Dominique3,Hazen Terry C23,Techtmann Stephen M1ORCID

Affiliation:

1. Department of Biological Sciences, Michigan Technological University , Houghton, MI 49931 , United States

2. Department of Microbiology, University of Tennessee Knoxville , Knoxville, TN 37996 , United States

3. Department of Civil and Environmental Engineering, University of Tennessee Knoxville , Knoxville, TN 37996 , United States

Abstract

Abstract Intra-specific genomic diversity is well documented in microbes. The question, however, remains whether natural selection or neutral evolution is the major contributor to this diversity. We undertook this study to estimate genomic diversity in Pseudoalteromonas atlantica populations and whether the diversity, if present, could be attributed to environmental factors or distance effects. We isolated and sequenced twenty-three strains of P. atlantica from three geographically distant deep marine basins and performed comparative genomic analyses to study the genomic diversity of populations among these basins. Average nucleotide identity followed a strictly geographical pattern. In two out of three locations, the strains within the location exhibited >99.5% identity, whereas, among locations, the strains showed <98.11% identity. Phylogenetic and pan-genome analysis also reflected the biogeographical separation of the strains. Strains from the same location shared many accessory genes and clustered closely on the phylogenetic tree. Phenotypic diversity between populations was studied in ten out of twenty-three strains testing carbon and nitrogen source utilization and osmotolerance. A genetic basis for phenotypic diversity could be established in most cases but was apparently not influenced by local environmental conditions. Our study suggests that neutral evolution may have a substantial role in the biodiversity of P. atlantica.

Funder

University of Tennessee

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3