Affiliation:
1. College of Engineering, China Agricultural University, Beijing 100083, China
2. Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
Abstract
ABSTRACT
The clostridial fermentation caused by the outgrowth of Clostridia was mainly responsible for the silage anaerobic deterioration. Our previous results showed that Clostridium perfringens dominated the clostridial community in poor-fermented alfalfa silage. This study was conducted to further examine the role of C. perfringens in silage anaerobic deterioration through fermentation products and the microbial community analyses. Direct-cut alfalfa was ensiled with C. perfringens contamination (CKC) or with the addition of Lactobacillus plantarum, sucrose and C. perfringens (LSC). Contamination with C. perfringens enhanced the clostridial fermentation in CKC silage, as indicated by high contents of butyric acid, ammonia nitrogen and Clostridia, while LSC silage was well preserved. The genera Bifidobacterium, Garciella and Clostridium dominated the bacterial community in CKC silage, while predominate genus was replaced by Lactobacillus in LSC silage. The clostridial community in CKC silage was dominated by Garciella sp. (26.9 to 58.1%) and C. tyrobutyricum (24.4 to 48.6%), while the relative abundance of C. perfringens was below 5.0%. Therefore, the effect of Clostridia contamination on ensiling fermentation was dependent on the ensilability of the silage material. Garciella sp. and C. tyrobutyricum, rather than C. perfringens, played dominant role in the clostridial fermentation in CKC silage.
Funder
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Genetics,Molecular Biology,Microbiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献