Transcriptomic analysis of Sur7-mediated response ofBeauveria bassianato different nutritional conditions

Author:

Zhang Long-Bin1ORCID,Qiu Ting-Ting1,Huang Zhi-Hong2,Ye Xiu-Yun1,Guan Yi1ORCID

Affiliation:

1. Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China

2. Chemical Engineering Istitute, Huaqiao University, Xiamen, Fujian, 361021, China

Abstract

ABSTRACTIntegrity of the cell wall is requisite for fungal growth and function. Sur7 governs cell wall composition, and affects conidial sporulation and germination in Beauveria bassiana, a filamentous entomopathogenic fungus. The role of Sur7 in fungal growth on various nutrients remains unclear. We have previously reported that Sur7 deletion results in the attenuation of B. bassiana growth on supplemented Sabouraud dextrose agar (SDAY) and minimal Czapek–Dox agar (CDA) compared to wild type (WT). Here, we used transcriptomic analysis to compare WT and Sur7 mutant (ΔSur7) responses to CDA and SDAY. Growth on CDA, compared with that on SDAY, affected the expression of more genes in the WT than in the mutant. Differentially expressed genes were enriched for transportation process terms in the ΔSur7 mutant and metabolic process terms in the WT. Different processes were repressed in the ΔSur7 (metabolic process) and WT (ribosome synthesis) cells. Despite the shared enrichment of nitrogen metabolism genes, differentially expressed genes were enriched in distinct saccharide-energy metabolism terms in each strain. We conclude that Sur7 ensures the growth of B. bassiana in a minimal medium by influencing the expression of genes involved in the consumption of sucrose via specific energy metabolism pathways.

Funder

Priming Scientific Research Foundation of Fuzhou University, China

National Natural Science Foundation of China

Natural Science Foundation of Fujian

Foundation of Marine Bioenzyme Engineering Innovation Service Platform

Fujian Province University

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3