Unveiling a Novel Role of Cdc42 in Pyruvate Metabolism Pathway to Mediate Insecticidal Activity of Beauveria bassiana

Author:

Guan YiORCID,Wang Donghuang,Lin Xiaofeng,Li Xin,Lv Chao,Wang Dingyi,Zhang LongbinORCID

Abstract

The small GTPase Cdc42 acts as a molecular switch essential for cell cycles and polar growth in model yeast, but has not been explored in Beaurveria bassiana, an insect-pathogenic fungus serving as a main source of fungal formulations against arthropod pests. Here, we show the indispensability of Cdc42 for fungal insecticidal activity. Deletion of cdc42 in B. bassiana resulted in a great loss of virulence to Galleria mellonella, a model insect, via normal cuticle infection as well as defects in conidial germination, radial growth, aerial conidiation, and conidial tolerance to heat and UVB irradiation. The deleted mutant’s hyphae formed fewer or more septa and produced unicellular blastospores with disturbed cell cycles under submerged-culture conditions. Transcriptomic analysis revealed differential expression of 746 genes and dysregulation of pyruvate metabolism and related pathways, which were validated by marked changes in intracellular pyruvate content, ATP content, related enzyme activities, and in extracellular beauvericin content and Pr1 protease activity vital for fungal virulence. These findings uncover a novel role for Cdc42 in the pathways of pyruvate metabolism and the pyruvate-involved tricarboxylic acid cycle (TCA cycle) and a linkage of the novel role with its indispensability for the biological control potential of B. bassiana against arthropod pests.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Fujian Province

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3