Characterization of carotenoids and genes encoding their biosynthetic pathways in Azospirillum brasilense

Author:

Mishra Shivangi1,Singh Chanotiya Chandan2,Shanker Karuna2,Kumar Tripathi Anil1ORCID

Affiliation:

1. School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India

2. CSIR-Central Institute of Medicinal and Aromatic Plants, Kukrail Picnic Spot Road, Lucknow 226015, India

Abstract

Abstract Azospirillum brasilense is a non-photosynthetic member of the family Rhodospirillaceae. Some strains of this bacterium are reported to produce bacterioruberin type of carotenoids, which are generally produced by halophilic or psychrophilic bacteria. Since no other member of Rhodospirillaceae produces bacterioruberin type of carotenoids, we investigated the presence of genes involved in bacterioruberin and spirilloxanthin biosynthetic pathways in A. brasilense Cd. Although genes encoding the spirilloxanthin pathway were absent, homologs of several genes (crtC and crtF) involved in the biosynthesis of bacterioruberins were present in the genome of A. brasilense Cd. However, the homolog of CruF responsible for the final step in bacterioruberin biosynthesis could not be found. We also characterized the carotenoids of A. brasilense Cd using thin-layer chromatography, high-performance liquid chromatography, absorption spectra and high-resolution mass spectrometry (HRMS). Resolution of the methanol extract of carotenoids in ultra-performance liquid chromatography showed nine peaks, out of which six peaks showed absorption spectra characteristic of carotenoids. HRMS of each peak produced 1–14 fragments with different m/z values. Two of these fragments were identified as 19′-hydroxyfucoxanthinol and 8′-apoalloxanthinal, which are the carotenoids found in aquatic microalgae.

Funder

Indian Council of Agricultural Research

University Grants Commission

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3