Evaluating the genetic basiss of anti-cancer property of Taxol in Saccharomyces cerevisiae model

Author:

Veerabhadrappa Bhavana1,Subramanian Subasri1,S. J. Sudharshan1,Dyavaiah Madhu1ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology Pondicherry University Pondicherry - 605014, India

Abstract

ABSTRACT Taxol has been regarded as one of the most successful anti-cancer drugs identified from natural sources to date. Although Taxol is known to sensitize cells by stabilizing microtubules, its ability to cause DNA damage in peripheral blood lymphocytes and to induce oxidative stress and apoptosis indicates that Taxol may have other modes of cytotoxic action. This study focuses on identifying the additional targets of Taxol that may contribute to its multifaceted cell killing property, using Saccharomyces cerevisiae. We show that yeast oxidative stress response mutants (sod1Δ, tsa1Δ and cta1Δ) and DNA damage response mutants (mre11∆, sgs1∆ and sub1∆) are highly sensitive to Taxol. Our results also show that Taxol increases the level of reactive oxygen species (ROS) in yeast oxidative stress response mutant strains. Further, 4ʹ,6-Diamidino-2ʹ-phenylindole (DAPI) and acridine orange/ethidium bromide (AO/EB) staining show that Taxol induces apoptotic features such as nuclear fragmentation and chromatin condensation in DNA repair mutants. On the whole, our results suggest that Taxol's cytotoxic property is attributed to its multifaceted mechanism of action. Yeast S. cerevisiae anti-oxidant and DNA repair gene mutants are sensitive to Taxol compared to wild-type, suggesting yeast model can be used to identify the genetic targets of anti-cancer drugs.

Funder

UGC

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3