Effect of microplastic pollution on the gut microbiome of anecic and endogeic earthworms

Author:

Papazlatani Christina1ORCID,Garbeva Paolina1ORCID,Huerta Lwanga Esperanza2

Affiliation:

1. Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) , 6708 PB Wageningen , The Netherlands

2. Soil Physics and Land Management Group, Wageningen University and Research , PO Box 47, 6708 PB Wageningen , The Netherlands

Abstract

Abstract Microplastic (MP) pollution constitutes an emerging type of pollution threatening both aquatic and terrestrial ecosystems. The impact on aquatic ecosystems has been extensively studied, but the effect on terrestrial ecosystems and their inhabitants is mostly underexplored. In this study, we explored the effect of MP pollution on gut bacterial microbiome of endogeic (Aporrectodea caliginosa) and anecic (Lumbricus terrestris) earthworms. The experiments were performed in sandy soil with 0.2% of low-density polyethylene MPs (LDPE MPs). We observed that the endogeic earthworms had 100% survival, while anecic earthworms survived 25 days in the control (i.e. in absence of MPs) and 21 days in the treatment with LDPE MPs. The main driver of shifts in the diversity and composition of the bacterial communities in the gut of tested earthworms was the lifestyle of the worms, followed by the presence of MPs. The bacterial microbiome diversity was significantly different among the two types of earthworms, and the highest bacterial diversity was found in the gut of the endogeic earthworms. The effect of MPs on gut bacterial microbiome was clearly observed in the changes in the relative abundance of several phyla and families of the bacterial communities in both types of earthworms, although it was most evident in the anecic earthworms. The Actinobacteriota, Proteobacteria, and Firmicutes were the main groups enhanced in the MP treatments, suggesting enrichment of the bacterial communities with potential plastic degraders.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3