Variable cell division time and asymmetric division site lead to filament-to-rod cell cycle of Lysinibacillus varians

Author:

Zhu Chunjie123,Sun Guoping123,Wang Xiaoming4,Guo Jun123,Li Enze123,Yang Yonggang123,Xu Meiying123

Affiliation:

1. Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Central Xianlie 100, Yuexiu, 510070, Guangzhou, China

2. State Key Laboratory of Applied Microbiology Southern China, Central Xianlie 100, Yuexiu, 510070, Guangzhou, China

3. Guangdong Open Laboratory of Applied Microbiology, Central Xianlie 100, Yuexiu, 510070, Guangzhou, China

4. School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Panyu District, 510006, Guangzhou, China

Abstract

ABSTRACT All well-established cell size homeostasis paradigms are based on the researches of rod bacteria like B. subtilis and E. coli, suggesting a constant division time (timer model), division size (sizer model) or added size (adder model) before division. However, Lysinibacillus varians, a new species with regular filament-to-rod cell cycle, is inconsistent with existing models. In this study, the cell size parameters of the type strain GY32, were investigated by combing multiple microscopy techniques and single-cell approach. Our results showed that the filaments of strain GY32 were unicellular cells with multiple nucleoids. The division time of GY32 cells was variable and their daughter cells produced by asymmetric binary fission had different birth sizes, which were proportional to their elongation rates, resulting in high heterogeneity among the sister cells. Furthermore, the added size from birth to division was significantly shorter than birth size (p < 0.01) and decreased along generations. The results above revealed that the asymmetric division site and varied cell size parameters resulted in filament-to-rod cell cycle of L. varians and cell size homeostasis could be a more complex and dynamic process than previously assumed. These findings would be helpful in elucidating the open questions in cell division and cell size heterogeneity.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Guangdong Provincial Science and Technology

Guangdong Technological Innovation Strategy of Special Funds

Science and Technology Development Fund

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3