Affiliation:
1. Department of Environmental Sciences, ETH Zurich, Switzerland
2. Department of Environmental Microbiology, Eawag, Switzerland
Abstract
ABSTRACT
A number of recent experiments at the single-cell level have shown that genetically identical bacteria that live in homogeneous environments often show a substantial degree of phenotypic variation between cells. Often, this variation is attributed to stochastic aspects of biology—the fact that many biological processes involve small numbers of molecules and are thus inherently variable. However, not all variation between cells needs to be stochastic in nature; one deterministic process that could be important for cell variability in some bacterial species is the age of the cell poles. Working with the alphaproteobacterium
Methylobacterium extorquens
, we monitored individuals in clonally growing populations over several divisions and determined the pole age, cell size, and interdivision intervals of individual cells. We observed the high levels of variation in cell size and the timing of cell division that have been reported before. A substantial fraction of this variation could be explained by each cell's pole age and the pole age of its mother: cell size increased with increasing pole age, and the interval between cell divisions decreased. A theoretical model predicted that populations governed by such processes will quickly reach a stable distribution of different age and size classes. These results show that the pole age distribution in bacterial populations can contribute substantially to cellular individuality. In addition, they raise questions about functional differences between cells of different ages and the coupling of cell division to cell size.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献