Affiliation:
1. Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
2. Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
Abstract
ABSTRACT
Methanotrophs use methane as a sole carbon source and thus play a critical role in its global consumption. Intensified interest in methanotrophs for their low-cost production of value-added products and large-scale industrialization has led to investigations of strain-to-strain variation in parameters for growth optimization and metabolic regulation. In this study, Methylocystis sp. Rockwell was grown with methane or methanol as a carbon source and ammonium or nitrate as a nitrogen source. The intracellular metabolomes and production of polyhydroxybutyrate, a bioplastic precursor, were compared among treatments to determine how the different combinations of carbon and nitrogen sources affected metabolite production. The methane–ammonium condition resulted in the highest growth, followed by the methane–nitrate, methanol–nitrate and methanol–ammonium conditions. Overall, the methane–ammonium and methane–nitrate conditions directed metabolism toward energy-conserving pathways, while methanol–ammonium and methanol–nitrate directed the metabolic response toward starvation pathways. Polyhydroxybutyrate was produced at greater abundances in methanol-grown cells, independent of the nitrogen source. Together, the results revealed how Methylocystis sp. Rockwell altered its metabolism with different combinations of carbon and nitrogen source, with implications for production of industrially relevant metabolites.
Publisher
Oxford University Press (OUP)
Subject
Genetics,Molecular Biology,Microbiology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献