Increasing lysine level improved methanol assimilation toward butyric acid production in Butyribacterium methylotrophicum

Author:

Wang Jing,Liao Yang,Qin Jialun,Ma Chen,Jin Yuqi,Wang Xin,Chen Kequan,Ouyang Pingkai

Abstract

Abstract Background Methanol, a promising non-food fermentation substrate, has gained increasing interest as an alternative feedstock to sugars for the bio-based production of value-added chemicals. Butyribacterium methylotrophicum, one of methylotrophic-acetogenic bacterium, is a promising host to assimilate methanol coupled with CO2 fixation for the production of organic acids, such as butyric acid. Although the methanol utilization pathway has been identified in B. methylotrophicum, little knowledge was currently known about its regulatory targets, limiting the rational engineering to improve methanol utilization. Results In this study, we found that methanol assimilation of B. methylotrophicum could be significantly improved when using corn steep liquor (CSL) as the co-substrate. The further investigation revealed that high level of lysine was responsible for enhanced methanol utilization. Through the transcriptome analysis, we proposed a potential mechanism by which lysine confers improved methylotrophy via modulating NikABCDE and FhuBCD transporters, both of which are involved in the uptake of cofactors essential for enzymes of methanol assimilation. The improved methylotrophy was also confirmed by overexpressing NikABCDE or FhuBCD operon. Finally, the de novo synthetic pathway of lysine was further engineered and the methanol utilization and butyric acid production of B. methylotrophicum were improved by 63.2% and 79.7%, respectively. After an optimization of cultivation medium, 3.69 g/L of butyric acid was finally achieved from methanol with a yield of 76.3%, the highest level reported to date. Conclusion This study revealed a novel mechanism to regulate methanol assimilation by lysine in B. methylotrophicum and engineered it to improve methanol bioconversion to butyric acid, culminating in the synthesis of the highest butyric acid titer reported so far in B. methylotrophicum. What’s more, our work represents a further advancement in the engineering of methylotrophic-acetogenic bacterium to improve C1-compound utilization. Graphical Abstract

Funder

The National Key Research and Development Program of China

The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3