Myocardial slices come to age: an intermediate complexity in vitro cardiac model for translational research

Author:

Pitoulis Fotios G1ORCID,Watson Samuel A1,Perbellini Filippo12ORCID,Terracciano Cesare M1ORCID

Affiliation:

1. Laboratory of Cell Electrophysiology, Department of Myocardial Function, Imperial College London, National Heart and Lung Institute, 4th Floor ICTEM Building Hammersmith Hospital, Du Cane Road, London W12 0NN, UK

2. Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany

Abstract

Abstract Although past decades have witnessed significant reductions in mortality of heart failure together with advances in our understanding of its cellular, molecular, and whole-heart features, a lot of basic cardiac research still fails to translate into clinical practice. In this review we examine myocardial slices, a novel model in the translational arena. Myocardial slices are living ultra-thin sections of heart tissue. Slices maintain the myocardium’s native function (contractility, electrophysiology) and structure (multicellularity, extracellular matrix) and can be prepared from animal and human tissue. The discussion begins with the history and current advances in the model, the different interlaboratory methods of preparation and their potential impact on results. We then contextualize slices’ advantages and limitations by comparing it with other cardiac models. Recently, sophisticated methods have enabled slices to be cultured chronically in vitro while preserving the functional and structural phenotype. This is more timely now than ever where chronic physiologically relevant in vitro platforms for assessment of therapeutic strategies are urgently needed. We interrogate the technological developments that have permitted this, their limitations, and future directions. Finally, we look into the general obstacles faced by the translational field, and how implementation of research systems utilizing slices could help in resolving these.

Funder

British Heart Foundation

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial: Methods in cardiovascular biologics and regenerative medicine;Frontiers in Cardiovascular Medicine;2024-09-13

2. Microfluidic systems for modeling digestive cancer: a review of recent progress;Biomedical Physics & Engineering Express;2024-08-28

3. Experimental models of myocardial ischemia: classical approaches and innovations (review);The Siberian Journal of Clinical and Experimental Medicine;2024-04-04

4. Preclinical Models of Cardiac Disease: A Comprehensive Overview for Clinical Scientists;Cardiovascular Engineering and Technology;2024-01-16

5. The hunt for novel AAV capsids with improved cardiac tropism;Molecular Therapy - Methods & Clinical Development;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3