Affiliation:
1. Biodesign Center for Mechanisms of Evolution, Arizona State University , Tempe, AZ 85287 , USA
2. Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology , 24306 Plön , Germany
Abstract
Abstract
By revealing the influence of recombinational activity beyond what can be achieved with controlled crosses, measures of linkage disequilibrium (LD) in natural populations provide a powerful means of defining the recombinational landscape within which genes evolve. In one of the most comprehensive studies of this sort ever performed, involving whole-genome analyses on nearly 1,000 individuals of the cyclically parthenogenetic microcrustacean Daphnia pulex, the data suggest a relatively uniform pattern of recombination across the genome. Patterns of LD are quite consistent among populations; average rates of recombination are quite similar for all chromosomes; and although some chromosomal regions have elevated recombination rates, the degree of inflation is not large, and the overall spatial pattern of recombination is close to the random expectation. Contrary to expectations for models in which crossing-over is the primary mechanism of recombination, and consistent with data for other species, the distance-dependent pattern of LD indicates excessively high levels at both short and long distances and unexpectedly low levels of decay at long distances, suggesting significant roles for factors such as nonindependent mutation, population subdivision, and recombination mechanisms unassociated with crossing over. These observations raise issues regarding the classical LD equilibrium model widely applied in population genetics to infer recombination rates across various length scales on chromosomes.
Publisher
Oxford University Press (OUP)
Subject
Genetics,Ecology, Evolution, Behavior and Systematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献