Effect of raspberry extract on wound healing

Author:

Lu Wenjing,Xu Meng,Yuan Youwei,Zhang Xuemei,Tan Jianxin,He Junping,Tian Yiling

Abstract

Abstract The main purpose of this study was to investigate the effect of raspberry extract on wound healing and compare it with that of ellagic acid. The elimination of excess free radicals was the key to preventing wound inflammation; cellular antioxidation activity was evaluated using an oxidative stress damage cell model. Cell proliferation ability was measured using the WST-1 assay, and the migration capacity was determined using the wound scratch assay. A mouse wound model was used to verify the effect of raspberry extract on wound healing. The cellular antioxidant activity of the extract ((50.31±3.17) μg/mL) was slightly lower than that of ellagic acid ((44.59±2.38) μg/mL). The results of a cell proliferation assay showed that both raspberry extract and ellagic acid at 5 μg/mL could significantly (P<0.01) promote the proliferation of HaCaT cells. After culturing for 24 h and 48 h, the cell healing rates of the extract were (41.11±0.38) per cent and (68.88±2.51) per cent, respectively, whereas the corresponding rates of ellagic acid were (39.01±2.40) per cent and (70.33±0.89) per cent; hence, there were no significant differences between them (P>0.05). The wound areas of mice fed low, medium, and high doses of raspberry extract for 14 days were 1.66, 1.41, and 1.24 mm2, respectively, which were significantly lower than that of the blank control group, 2.18 mm2 (P<0.05). These findings indicate that raspberry extract and ellagic acid exhibit similar antioxidant capacities and equivalent cell proliferation-promoting capabilities. In the mouse test, raspberry extract effectively promoted a reduction in wound area. This work demonstrates the potential of raspberry extract in wound healing, suggesting a promising application of raspberry resources in the fields of functional foods, cosmetics, and medicine.

Funder

Hebei Province, China

Modern Forestry Discipline Group

Food Processing Discipline Group

Hebei Agricultural University, China

Publisher

Oxford University Press (OUP)

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3