Affiliation:
1. Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology , Wuhan , China
Abstract
Abstract
Antibiotic abuse results in various antibiotic resistance among a number of foodborne bacteria, posing a severe threat to food safety. Antibiotic resistance genes are commonly detected in foodborne pathogens, which has sparked much interest in finding solutions to these issues. Various strategies against these drug-resistant pathogens have been studied, including new antibiotics and phages. Recently, a powerful tool has been introduced in the fight against drug-resistant pathogens, namely, clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) system aggregated by a prokaryotic defense mechanism. This review summarizes the mechanism of antibiotic resistance in Salmonella and resistance to common antibiotics, analyzes the relationship between Salmonella CRISPR-Cas and antibiotic resistance, discusses the changes in antibiotic resistance on the structure and function of CRISPR-Cas, and finally predicts the mechanism of CRISPR-Cas intervention in Salmonella antibiotic resistance. In the future, CRISPR-Cas is expected to become an important tool to reduce the threat of antibiotic-resistant pathogens in food safety.
Funder
Wuhan Institute of Technology
Hubei Provincial Department of Education
Publisher
Oxford University Press (OUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献