The aroA and luxS Double-Gene Mutant Strain Has Potential to Be a Live Attenuated Vaccine against Salmonella Typhimurium

Author:

Zuo Wei1,Yang Denghui1,Wu Xiaojun1,Zhang Beibei1,Wang Xinyu1,Hu Jiangang1,Qi Jingjing1,Tian Mingxing1,Bao Yanqing1ORCID,Wang Shaohui1

Affiliation:

1. Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China

Abstract

Salmonella Typhimurium (S. Typhimurium) is a zoonotic pathogen posing a threat to animal husbandry and public health. Due to the emergence of antibiotic-resistant strains, alternative prevention and control strategies are needed. Live attenuated vaccines are an ideal option that provide protection against an S. Typhimurium pandemic. To develop a safe and effective vaccine, double-gene mutations are recommended to attenuate virulence. In this study, we chose aroA and luxS genes, whose deletion significantly attenuates S. Typhimurium’s virulence and enhances immunogenicity, to construct the double-gene mutant vaccine strain SAT52ΔaroAΔluxS. The results show that the mutant strain’s growth rate, adherence and invasion of susceptible cells are comparable to a wild-type strain, but the intracellular survival, virulence and host persistence are significantly attenuated. Immunization assay showed that 106 colony-forming units (CFUs) of SAT52ΔaroAΔluxS conferred 100% protection against wild-type challenges; the bacteria persistence in liver and spleen were significantly reduced, and no obvious pathological lesions were observed. Therefore, the double-gene mutant strain SAT52ΔaroAΔluxS exhibits potential as a live attenuated vaccine candidate against S. Typhimurium infection.

Funder

National Key R & D Program of China

Guangxi Key Research and Development Program

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

National Basic Fund for Institutes by Shanghai Veterinary Research Institute

Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3