A convergent SAV scheme for Cahn–Hilliard equations with dynamic boundary conditions

Author:

Metzger Stefan1

Affiliation:

1. Department of Mathematics , Friedrich–Alexander–Universität Erlangen–Nürnberg, 91058 Erlangen, Germany

Abstract

Abstract The Cahn–Hilliard equation is one of the most common models to describe phase separation processes in mixtures of two materials. For a better description of short-range interactions between the material and the boundary, various dynamic boundary conditions for this equation have been proposed. Recently, a family of models using Cahn–Hilliard-type equations on the boundary of the domain to describe adsorption processes was analysed (cf. Knopf, P., Lam, K. F., Liu, C. & Metzger, S. (2021) Phase-field dynamics with transfer of materials: the Cahn–Hilliard equation with reaction rate dependent dynamic boundary conditions. ESAIM: Math. Model. Numer. Anal., 55, 229–282). This family of models includes the case of instantaneous adsorption processes studied by Goldstein, Miranville and Schimperna (2011, A Cahn–Hilliard model in a domain with non-permeable walls. Phys. D, 240, 754–766) as well as the case of vanishing adsorption rates, which was investigated by Liu and Wu (2019, An energetic variational approach for the Cahn–Hilliard equation with dynamic boundary condition: model derivation and mathematical analysis. Arch. Ration. Mech. Anal., 233, 167–247). In this paper, we are interested in the numerical treatment of these models and propose an unconditionally stable, linear, fully discrete finite element scheme based on the scalar auxiliary variable approach. Furthermore, we establish the convergence of discrete solutions towards suitable weak solutions of the original model. Thereby, when passing to the limit, we are able to remove the auxiliary variables introduced in the discrete setting completely. Finally, we present simulations based on the proposed linear scheme and compare them to results obtained using a stable, nonlinear scheme to underline the practicality of our scheme.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3