Well-posedness of a bulk-surface convective Cahn–Hilliard system with dynamic boundary conditions

Author:

Knopf Patrik,Stange Jonas

Abstract

AbstractWe consider a general class of bulk-surface convective Cahn–Hilliard systems with dynamic boundary conditions. In contrast to classical Neumann boundary conditions, the dynamic boundary conditions of Cahn–Hilliard type allow for dynamic changes of the contact angle between the diffuse interface and the boundary, a convection-induced motion of the contact line as well as absorption of material by the boundary. The coupling conditions for bulk and surface quantities involve parameters $$K,L\in [0,\infty ]$$ K , L [ 0 , ] , whose choice declares whether these conditions are of Dirichlet, Robin or Neumann type. We first prove the existence of a weak solution to our model in the case $$K,L\in (0,\infty )$$ K , L ( 0 , ) by means of a Faedo–Galerkin approach. For all other cases, the existence of a weak solution is then shown by means of the asymptotic limits, where K and L are sent to zero or to infinity, respectively. Eventually, we establish higher regularity for the phase-fields, and we prove the uniqueness of weak solutions given that the mobility functions are constant.

Funder

Universität Regensburg

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3