A quasi-optimal variant of the hybrid high-order method for elliptic partial differential equations with H−1 loads

Author:

Ern Alexandre1,Zanotti Pietro2ORCID

Affiliation:

1. Université Paris-Est, CERMICS (ENPC), 77455 Marne-la-Vallée cedex 2, France and INRIA Paris, 75589 Paris, France

2. Fakultät für Mathematik, TU Dortmund, D-44221 Dortmund, Germany

Abstract

Abstract Hybrid high-order (HHO) methods for elliptic diffusion problems have been originally formulated for loads in the Lebesgue space $L^2(\varOmega )$. In this paper we devise and analyse a variant thereof, which is defined for any load in the dual Sobolev space $H^{-1}(\varOmega )$. The main feature of the present variant is that its $H^1$-norm error can be bounded only in terms of the $H^1$-norm best error in a space of broken polynomials. We establish this estimate with the help of recent results on the quasi-optimality of nonconforming methods. We prove also an improved error bound in the $L^2$-norm by duality. Compared to previous works on quasi-optimal nonconforming methods the main novelties are that HHO methods handle pairs of unknowns and not a single function and, more crucially, that these methods employ a reconstruction that is one polynomial degree higher than the discrete unknowns. The proposed modification affects only the formulation of the discrete right-hand side. This is obtained by properly mapping discrete test functions into $H^1_0(\varOmega )$.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference26 articles.

1. Hybrid high-order methods for finite deformations of hyperelastic materials;Abbas;Comput. Mech.,2018

2. A hybrid high-order method for incremental associative plasticity with small deformations;Abbas;Comput. Methods Appl. Mech. Engrg.,2019

3. The nonconforming virtual element method;Ayuso de Dios;ESAIM Math. Model. Numer. Anal.,2016

4. A note on the Poincaré inequality for convex domains;Bebendorf;Z. Anal. Anwend.,2003

5. Symposia Mathematica;Berger,1972

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3