Affiliation:
1. Facultad de Matemáticas , Pontificia Universidad Católica de Chile , Santiago , Chile
Abstract
Abstract
We study variants of the mixed finite element method (mixed FEM) and the first-order system least-squares finite element (FOSLS) for the Poisson problem where we replace the load by a suitable regularization which permits to use
H
−
1
H^{-1}
loads.
We prove that any bounded
H
−
1
H^{-1}
projector onto piecewise constants can be used to define the regularization and yields quasi-optimality of the lowest-order mixed FEM resp. FOSLS in weaker norms.
Examples for the construction of such projectors are given.
One is based on the adjoint of a weighted Clément quasi-interpolator.
We prove that this Clément operator has second-order approximation properties.
For the modified mixed method, we show optimal convergence rates of a postprocessed solution under minimal regularity assumptions—a result not valid for the lowest-order mixed FEM without regularization.
Numerical examples conclude this work.
Funder
Fondo Nacional de Desarrollo Científico y Tecnológico
Subject
Applied Mathematics,Computational Mathematics,Numerical Analysis
Reference22 articles.
1. F. Bertrand and D. Boffi,
First order least-squares formulations for eigenvalue problems,
IMA J. Numer. Anal. 42 (2022), no. 2, 1339–1363.
2. P. B. Bochev and M. D. Gunzburger,
Least-Squares Finite Element Methods,
Appl. Math. Sci. 166,
Springer, New York, 2009.
3. D. Boffi, F. Brezzi and M. Fortin,
Mixed Finite Element Methods and Applications,
Springer Ser. Comput. Math. 44,
Springer, Heidelberg, 2013.
4. P. Bringmann,
Computational competition of three adaptive least-squares finite element schemes,
preprint (2022), https://arxiv.org/abs/2209.06028.
5. Z. Cai and J. Ku,
Optimal error estimate for the div least-squares method with data
f
∈
L
2
f\in L^{2}
and application to nonlinear problems,
SIAM J. Numer. Anal. 47 (2010), no. 6, 4098–4111.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献