Backward differentiation formula finite difference schemes for diffusion equations with an obstacle term

Author:

Bokanowski Olivier1,Debrabant Kristian2

Affiliation:

1. Université de Paris, Laboratoire Jacques-Louis Lions (LJLL), F-75005 Paris, France, and Sorbonne-Université, CNRS, LJLL, F-75005 Paris, France, and Ensta-Paris, Laboratoire UMA, 91120 Palaiseau, France

2. Department of Mathematics and Computer Science, University of Southern Denmark, 5230 OdenseM, Denmark

Abstract

Abstract Finite difference schemes, using backward differentiation formula (BDF), are studied for the approximation of one-dimensional diffusion equations with an obstacle term of the form $$\begin{equation*}\min(v_t - a(t,x) v_{xx} + b(t,x) v_x + r(t,x) v, v- \varphi(t,x))= f(t,x).\end{equation*}$$For the scheme building on the second-order BDF formula, we discuss unconditional stability, prove an $L^2$-error estimate and show numerically second-order convergence, in both space and time, unconditionally on the ratio of the mesh steps. In the analysis an equivalence of the obstacle equation with a Hamilton–Jacobi–Bellman equation is mentioned, and a Crank–Nicolson scheme is tested in this context. Two academic problems for parabolic equations with an obstacle term with explicit solutions and the American option problem in mathematical finance are used for numerical tests.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference35 articles.

1. Frontiers in Applied Mathematics;Achdou,2005

2. Estimation de la frontière libre des options Américaines au voisinage de l’échéance;Barles;C. R. Acad. Sci. Paris Sér. I Math.,1993

3. Finite volume methods for the valuation of American options;Berton;M2AN Math. Model. Numer. Anal.,2006

4. On the continuity of the time derivative of the solution to the parabolic obstacle problem with variable coefficients;Blanchet;J. Math. Pures Appl. (9),2006

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3