Author:
Bokanowski Olivier,Picarelli Athena,Reisinger Christoph
Abstract
AbstractWe study a second order Backward Differentiation Formula (BDF) scheme for the numerical approximation of linear parabolic equations and nonlinear Hamilton–Jacobi–Bellman (HJB) equations. The lack of monotonicity of the BDF scheme prevents the use of well-known convergence results for solutions in the viscosity sense. We first consider one-dimensional uniformly parabolic equations and prove stability with respect to perturbations, in the $$L^2$$
L
2
norm for linear and semi-linear equations, and in the $$H^1$$
H
1
norm for fully nonlinear equations of HJB and Isaacs type. These results are then extended to two-dimensional semi-linear equations and linear equations with possible degeneracy. From these stability results we deduce error estimates in $$L^2$$
L
2
norm for classical solutions to uniformly parabolic semi-linear HJB equations, with an order that depends on their Hölder regularity, while full second order is recovered in the smooth case. Numerical tests for the Eikonal equation and a controlled diffusion equation illustrate the practical accuracy of the scheme in different norms.
Funder
Università degli Studi di Verona
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献