On the rate of convergence of a numerical scheme for Fractional conservation laws with noise

Author:

Koley Ujjwal1,Vallet Guy2

Affiliation:

1. Centre for Applicable Mathematics , Tata Institute of Fundamental Research, P.O. Box 6503, GKVK Post Office, Bangalore 560065, India

2. LMAP UMR- CNRS 5142 , IPRA BP 1155, 64013 Pau Cedex, France guy.vallet@univ-pau.fr

Abstract

AbstractWe consider a semidiscrete finite volume scheme for a degenerate fractional conservation law driven by a cylindrical Wiener process. Making use of the bounded variation (BV) estimates, and a clever adaptation of classical Kružkov theory, we provide estimates on the rate of convergence for approximate solutions to degenerate fractional problems. The main difficulty stems from the degenerate fractional operator and requires a significant departure from the existing strategy to establish Kato’s type of inequality. Indeed, recasting the mathematical framework recently developed in Bhauryal et al. (2021, J. Differential Equations, 284, 433–521), we establish such Kato’s type of inequality for a finite volume scheme. Finally, as an application of this theory, we demonstrate numerical convergence rates.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference36 articles.

1. Entropy formulation for fractal conservation laws;Alibaud;J. Evol. Equ.,2007

2. Time-splitting approximation of the Cauchy problem for a stochastic conservation law;Bauzet;Math. Comput. Simulation,2015

3. Convergence of flux-splitting finite volume schemes for hyperbolic scalar conservation laws with a multiplicative stochastic perturbation;Bauzet;Math. Comput.,2016

4. Convergence of monotone finite volume schemes for hyperbolic scalar conservation laws with multiplicative noise;Bauzet;Stoch. Partial Differ. Equ. Anal. Comput.,2016

5. The Cauchy problem for a conservation law with a multiplicative stochastic perturbation;Bauzet;J. Hyperbolic Differ. Equ.,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3