Publisher
Springer Nature Switzerland
Reference9 articles.
1. Bauzet, C., Charrier, J., Gallouët, T.: Convergence of monotone finite volume schemes for hyperbolic scalar conservation laws with multiplicative noise. Stochastics Partial Diff. Equa. Anal. Comput. 4(1), 150–223 (2015). https://doi.org/10.1007/s40072-015-0052-z
2. Behera, S., Majee, A.K.: On rate of convergence of finite difference scheme for degenerate parabolic-hyperbolic pde with Lévy noise. https://arxiv.org/abs/2212.12846 (2022)
3. Bhauryal, N., Koley, U., Vallet, G.: The Cauchy problem for fractional conservation laws driven by Lévy noise. Stochastic Process. Appl. 130(9), 5310–5365 (2020). https://doi.org/10.1016/j.spa.2020.03.009
4. Cifani, S., Jakobsen, E.R.: On numerical methods and error estimates for degenerate fractional convection–diffusion equations. Numer. Math. 127(3), 447–483 (2013). https://doi.org/10.1007/s00211-013-0590-0
5. Cont, R., Tankov, P.: Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL (2004)