Affiliation:
1. CI2MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Concepción, Chile
Abstract
Abstract
We introduce and analyze a hybridizable discontinuous Galerkin method for the gradient-velocity-pressure formulation of the Brinkman problem. We present an a priori error analysis of the method, showing optimal order of convergence of the error. We also introduce an a posteriori error estimator, of the residual type, which helps us to improve the quality of the numerical solution. We establish reliability and local efficiency of our estimator for the $L^{2} $-error of the velocity gradient and the pressure and the $ H^{1} $-error of the velocity, with constants written explicitly in terms of the physical parameters and independent of the size of the mesh. In particular, our results are also valid for the Stokes problem. Finally, we provide numerical experiments showing the quality of our adaptive scheme.
Funder
Comisión Nacional de Investigación Científica y Tecnológica
Fundación Centros Tecnológicos Iñaki Goenaga
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computational Mathematics,General Mathematics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献