Analysis of an adaptive HDG method for the Brinkman problem

Author:

Araya Rodolfo1,Solano Manuel1,Vega Patrick1

Affiliation:

1. CI2MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Concepción, Chile

Abstract

Abstract We introduce and analyze a hybridizable discontinuous Galerkin method for the gradient-velocity-pressure formulation of the Brinkman problem. We present an a priori error analysis of the method, showing optimal order of convergence of the error. We also introduce an a posteriori error estimator, of the residual type, which helps us to improve the quality of the numerical solution. We establish reliability and local efficiency of our estimator for the $L^{2} $-error of the velocity gradient and the pressure and the $ H^{1} $-error of the velocity, with constants written explicitly in terms of the physical parameters and independent of the size of the mesh. In particular, our results are also valid for the Stokes problem. Finally, we provide numerical experiments showing the quality of our adaptive scheme.

Funder

Comisión Nacional de Investigación Científica y Tecnológica

Fundación Centros Tecnológicos Iñaki Goenaga

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference59 articles.

1. A posteriori error estimation for discontinuous Galerkin finite element approximation;Ainsworth;SIAM J. Numer. Anal.,2007

2. Fully computable error bounds for discontinuous Galerkin finite element approximations on meshes with an arbitrary number of levels of hanging nodes;Ainsworth;SIAM J. Numer. Anal.,2010

3. Energy norm a posteriori error estimation for discontinuous Galerkin methods;Becker;Comput. Methods Appl. Mech. Engrg.,2003

4. An equilibrated a posteriori error estimator for the interior penalty discontinuous Galerkin method;Braess;SIAM J. Numer. Anal.,2014

5. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles;Brinkman;Appl. Sci. Res.,1947

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3