Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis
Reference47 articles.
1. Hood, P., Taylor, C.: Navier-Stokes equations using mixed interpolation. Finite element methods in flow problems, pp. 121-132. University of Alabama, Tuscaloosa (1974)
2. Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Rev. Fr. Autom. Inf. Rech. Opér. Math. 7, 33–75 (1973)
3. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21, 337–344 (1984)
4. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constrait in mixed finite element methods for incompressible flows. SIAM Rev. 59(3), 492–544 (2017)
5. Linke, A.: On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Eng. 268, 782–800 (2014)