Stretchable polymer composites with ultrahigh piezoelectric performance

Author:

Tang Tongxiang1,Shen Zhonghui2,Wang Jian2,Xu Shiqi3,Jiang Jiaxi4,Chang Jiahui45,Guo Mengfan1,Fan Youjun1,Xiao Yao1,Dong Zhihao1,Huang Houbing3ORCID,Li Xiaoyan4,Zhang Yihui45,Wang Danyang6,Chen Long-Qing7,Wang Ke1,Zhang Shujun8,Nan Ce-Wen1,Shen Yang15

Affiliation:

1. State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University , Beijing 100084 , China

2. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology , Wuhan 430070 , China

3. Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology , Beijing 100081 , China

4. Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University , Beijing 100084 , China

5. Center for Flexible Electronics Technology, Tsinghua University , Beijing 100084 , China

6. School of Materials Science and Engineering, University of New South Wales , Kensington , NSW 2052 , Australia

7. Department of Materials Science and Engineering, The Pennsylvania State University , State College , PA 16802 , USA

8. Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong , Wollongong , NSW 2500 , Australia

Abstract

ABSTRACT Flexible piezoelectric materials capable of withstanding large deformation play key roles in flexible electronics. Ferroelectric ceramics with a high piezoelectric coefficient are inherently brittle, whereas polar polymers exhibit a low piezoelectric coefficient. Here we report a highly stretchable/compressible piezoelectric composite composed of ferroelectric ceramic skeleton, elastomer matrix and relaxor ferroelectric-based hybrid at the ceramic/matrix interface as dielectric transition layers, exhibiting a giant piezoelectric coefficient of 250 picometers per volt, high electromechanical coupling factor keff of 65%, ultralow acoustic impedance of 3MRyl and high cyclic stability under 50% compression strain. The superior flexibility and piezoelectric properties are attributed to the electric polarization and mechanical load transfer paths formed by the ceramic skeleton, and dielectric mismatch mitigation between ceramic fillers and elastomer matrix by the dielectric transition layer. The synergistic fusion of ultrahigh piezoelectric properties and superior flexibility in these polymer composites is expected to drive emerging applications in flexible smart electronics.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Major Research Plan

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3