Bioprocess inspired formation of calcite mesocrystals by cation-mediated particle attachment mechanism

Author:

Wang Qihang12,Yuan Bicheng1,Huang Wenyang1,Ping Hang1,Xie Jingjing1,Wang Kun1,Wang Weimin1,Zou Zhaoyong12,Fu Zhengyi12ORCID

Affiliation:

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Wuhan 430070 , China

2. Hubei Longzhong Laboratory , Xiangyang 441000 , China

Abstract

Abstract Calcite mesocrystals were proposed, and have been widely reported, to form in the presence of polymer additives via oriented assembly of nanoparticles. However, the formation mechanism and the role of polymer additives remain elusive. Here, inspired by the biomineralization process of sea urchin spine comprising magnesium calcite mesocrystals, we show that calcite mesocrystals could also be obtained via attachment of amorphous calcium carbonate (ACC) nanoparticles in the presence of inorganic zinc ions. Moreover, we demonstrate that zinc ions can induce the formation of temporarily stabilized amorphous nanoparticles of less than 20 nm at a significantly lower calcium carbonate concentration as compared to pure solution, which is energetically beneficial for the attachment and occlusion during calcite growth. The cation-mediated particle attachment crystallization significantly improves our understanding of mesocrystal formation mechanisms in biomineralization and offers new opportunities to bioprocess inspired inorganic ions regulated materials fabrication.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3