Bott–Samelson Varieties and Poisson Ore Extensions

Author:

Elek Balázs1,Lu Jiang-Hua2

Affiliation:

1. Department of Mathematics, University of Toronto, Bahen Centre, Ontario, Canada

2. Department of Mathematics, The University of Hong Kong, Hong Kong

Abstract

Abstract We show that associated with any $n$-dimensional Bott–Samelson variety of a complex semi-simple Lie group $G$, one has $2^n$ Poisson brackets on the polynomial algebra $A={\mathbb{C}}[z_1, \ldots , z_n]$, each an iterated Poisson Ore extension and one of them a symmetric Poisson Cauchon–Goodearl–Letzter (CGL) extension in the sense of Goodearl–Yakimov. We express the Poisson brackets in terms of root strings and structure constants of the Lie algebra of $G$. It follows that the coordinate rings of all generalized Bruhat cells have presentations as symmetric Poisson CGL extensions. The paper establishes the foundation on generalized Bruhat cells and sets the stage for their applications to integrable systems, cluster algebras, total positivity, and toric degenerations of Poisson varieties, some of which are discussed in the Introduction.

Funder

University of Hong Kong

Research Grants Council of the Hong Kong SAR, China

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference41 articles.

1. Inequalities from Poisson brackets;Alekseev;Indag. Math. (N.S.),2014

2. Cluster algebras III: upper bounds and double Bruhat cells;Berenstein;Duke Math. J.,2005

3. Lectures on the geometry of flag varieties;Brion,2005

4. Progr. Math., 231;Brion,2005

5. Adv. Courses Math. CRM Barcelona;Brown,2005

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cluster algebra structures on Poisson nilpotent algebras;Memoirs of the American Mathematical Society;2023-10

2. Configuration Poisson Groupoids of Flags;International Mathematics Research Notices;2022-12-02

3. Poisson catenarity in Poisson nilpotent algebras;Journal of Algebra;2022-12

4. A Bruhat Atlas for the Mehta–van der Kallen Stratification of T∗GLn/B;Transformation Groups;2022-10-26

5. Bott–Samelson atlases, total positivity, and Poisson structures on some homogeneous spaces;Selecta Mathematica;2020-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3