Author:
Alekseev A.,Davydenkova I.
Funder
European Research Council
Swiss National Science Foundation
Reference11 articles.
1. Ginzburg–Weinstein via Gelfand–Zeitlin;Alekseev;J. Differential Geom.,2007
2. A. Alekseev, M. Podkopaeva, A. Szenes, The Horn problem and planar networks. Preprint arXiv:1207.0640.
3. A convexity theorem for Poisson actions of compact Lie groups;Flaschka;Ann. Sci. Éc. Norm. Supér.,1996
4. Total positivity: tests and parametrizations;Fomin;Math. Intelligencer,2000
5. Cluster algebras. I. Foundations;Fomin;J. Amer. Math. Soc.,2002
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Bott–Samelson Varieties and Poisson Ore Extensions;International Mathematics Research Notices;2019-07-08
2. The
U
(
n
) Gelfand–Zeitlin system as a tropical limit of Ginzburg–Weinstein diffeomorphisms;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2018-09-17
3. A symplectic proof of the Horn inequalities;Advances in Mathematics;2017-10