Affiliation:
1. Department of Natural Sciences, Tokyo City University, Tamazutsumi Setagaya-ku, Tokyo, Japan
Abstract
Abstract
Let $p$ be a rational prime and $q>1$ a $p$-power. Let $S_k(\Gamma _1(t))$ be the space of Drinfeld cuspforms of level $\Gamma _1(t)$ and weight $k$ for ${\mathbb{F}}_q[t]$. For any non-negative rational number $\alpha$, we denote by $d(k,\alpha )$ the dimension of the slope $\alpha$ generalized eigenspace for the $U$-operator acting on $S_k(\Gamma _1(t))$. In this paper, we prove a function field analogue of the Gouvêa–Mazur conjecture for this setting. Namely, we show that for any $\alpha \leqslant m$ and $k_1,k_2>\alpha +1$, if $k_1\equiv k_2 \bmod p^m$, then $d(k_1,\alpha )=d(k_2,\alpha )$.
Publisher
Oxford University Press (OUP)
Reference10 articles.
1. -adic families of Siegel modular cuspforms;Andreatta;Ann. of Math. (2),2015
2. On the Atkin Ut-operator for $\Gamma_1$(t)-invariant Drinfeld cusp forms;Bandini;Int. J. Number Theory,2018
3. On the Atkin Ut-operator for ${\Gamma_0 }$(t)-invariant Drinfeld cusp forms;Bandini
4. 2-Adic modular forms of minimal slope;Emerton,1998
5. Families of modular eigenforms;Gouvêa;Math. Comp.,1992
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献