Fourier coefficients and slopes of Drinfeld modular forms

Author:

Bandini Andrea1ORCID,Valentino Maria2

Affiliation:

1. Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy

2. Dipartimento di Matematica e Informatica, Università della Calabria, Via P. Bucci Cubo 30B VII piano, 87036 Arcavacata di Rende (CS), Italy

Abstract

Let [Formula: see text] be a Drinfeld modular form of level [Formula: see text] which is an eigenform for the Hecke operator [Formula: see text] ([Formula: see text] a prime of [Formula: see text]). We study the relations between the Fourier coefficients of [Formula: see text] and the [Formula: see text]-adic valuation of its eigenvalue (slope). We use formulas for some of the Fourier coefficients of [Formula: see text] to provide bounds and estimates on the slopes and, in particular, to find necessary conditions for “large” slopes, whose existence is closely connected with conjectures on oldforms and newforms.

Funder

University of Pisa

Publisher

World Scientific Pub Co Pte Ltd

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3