An Integralgeometric Approach to Dorronsoro Estimates

Author:

Orponen Tuomas1

Affiliation:

1. Department of Mathematics and Statistics, P.O. Box 68 (Pietari Kalmin katu 5) 00014 University of Helsinki, Helsinki, Finland

Abstract

Abstract A theorem of Dorronsoro from 1985 quantifies the fact that a Lipschitz function $f \colon \mathbb{R}^{n} \to \mathbb{R}$ can be approximated by affine functions almost everywhere, and at sufficiently small scales. This paper contains a new, purely geometric, proof of Dorronsoro’s theorem. In brief, it reduces the problem in $\mathbb{R}^{n}$ to a problem in $\mathbb{R}^{n - 1}$ via integralgeometric considerations. For the case $n = 1$, a short geometric proof already exists in the literature. A similar proof technique applies to parabolic Lipschitz functions $f \colon \mathbb{R}^{n - 1} \times \mathbb{R} \to \mathbb{R}$. A natural Dorronsoro estimate in this class is known, due to Hofmann. The method presented here allows one to reduce the parabolic problem to the Euclidean one and to obtain an elementary proof also in this setting. As a corollary, I deduce an analogue of Rademacher’s theorem for parabolic Lipschitz functions.

Funder

Academy of Finland

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference19 articles.

1. Bi-Lipschitz parts of quasisymmetric mappings;Azzam;Rev. Mat. Iberoam.,2016

2. An analyst’s traveling salesman theorem for sets of dimension larger than one;Azzam;Math. Ann.,2018

3. Fractals in Probability and Analysis

4. Singular integrals and rectifiable sets in ${\textbf{R}}^n$: Au-delà des graphes lipschitziens;David;Astérisque,1991

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Square function estimates for the evolutionary p-Laplace equation;Discrete and Continuous Dynamical Systems;2023

2. Parabolic rectifiability, tangent planes and tangent measures;Annales Fennici Mathematici;2022-06-03

3. The strong geometric lemma for intrinsic Lipschitz graphs in Heisenberg groups;Journal für die reine und angewandte Mathematik (Crelles Journal);2022-01-27

4. Blow-ups of caloric measure in time varying domains and applications to two-phase problems;Journal de Mathématiques Pures et Appliquées;2021-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3